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What is this talk about?

§ We study Fictitious Play in Zero-Sum Games.

§ Main result -- new sublinear regret guarantees:

(New class of matrices for which Karlin’s Conjecture holds.)

Fictitious play has O(T0.5) regret.

On n-dimensional Rock-Paper-Scissors 
matrices, and using any tiebreaking rule:



§ Payoff matrix A (n by n) 
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• Player 1 observes

§ Over T rounds, Players 1 and 2 play mixed strategies:

• Player 2 observes

§ Players observe payoff vector feedback:
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(e.g., three-strategy 
Rock-Paper-Scissors)

(e.g., distributions over strategy set {rock, paper, scissors}).  
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Player 2 payoff: −⟨x t1 , Ax t2⟩;

Refresher: Online Learning in Zero-Sum Games



§ Players seek to minimize their individual regrets:

Reg1(T ) := max
x1∈∆n
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§ This work: interested in total regret (henceforth regret ): 
Reg(T ) = Reg1(T ) + Reg2(T )

If Reg(T) = ! = o(T), then time-averaged iterates converge 
to Nash equilibrium of A at a rate of !/T = o(1).

§ Equivalence: regret minimization <--> convergence to Nash:

Refresher: Online Learning in Zero-Sum Games



Fictitious Play in Zero-Sum Games

{
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§ Fictitious Play (FP)

Equivalently: FP is simultaneous Follow-the-Leader (FTL):

[Brown, 1950]
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• Examples where FTL has linear regret Reg(T) = Ω(T).

• Issue: iterates of FTL can lack stability (no regularization!)

For general adversarial rewards: Fictitious Play / FTL fails! 

(Note: argmax always returns vertex of Δn and encodes tiebreaking)

Question: can FP still obtain sublinear regret in zero-sum game setting?



[Robinson, 1951]:

Karlin’s Conjecture: for all zero-sum games, 
RegFP(T)=O(T0.5).

On n-dim. identity matrix, RegFP(T)=Ω(T1-1/n), 
but using adversarial tiebreaking.

[Abernethy-Lai-
  Wibisono, 2021]:

Question: can FP still obtain sublinear regret in zero-sum game setting?

Some progress, ~50 years later: 

[Karlin, 1960]:

[Daskalakis-Pan, 2014]:

On all diagonal payoff matrices, RegFP(T)= O(T0.5) 
using fixed lexicographical tiebreaking.

Fictitious Play in Zero-Sum Games

Fictitious Play has sublinear regret in all 
zero-sum games, but with RegFP(T) ⩽ O(T1-1/n).



Main Result: New Regret Bounds for Fictitious Play

Theorem [LPSW, 2025]. On class of n-dimensional Rock-Paper-Scissors 
matrices, under symmetric learning, and using any tiebreaking rule:

Fictitious Play has regret RegFP(T)=O(T0.5).

§ n-dimensional RPS – generalizes RPS to n-dim., weighted regime:
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§ Symmetric learning - identical initializations x01 = x02 ∈ ∆n =⇒ x
t
:= x
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§ No tiebreaking assumption! New class where Karlin’s conjecture holds. 

A =

⎛
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−a3 a2 0
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Canonical symmetric zero-sum game (A=-AT ) (See [Hobauer-Sigmund], [Sandholm])

Secondary Result: same bound for Online GD with constant stepsizes.

Core idea: use geometric perspective of iterates in dual space of payoffs.

(i.e., “fast and furious” regime [Bailey-Piliouras, 2019]) 



One slide overview of analysis

§ Study cumulative dual payoff vectors:

Ψ(y) = max
x∈∆n

⟨x, y⟩ =⇒ Reg(T ) = 2 ·Ψ(yT+1)

y t =
∑t−1

k=0
Axk ∈ Rn

§ Equivalence between energy function and regret:

Underlying property: dual iterates of FP follow 
skew-(sub)gradient descent wrt energy function.

(cf., [Mertikopolous+‘18], 
[Bailey-Pilouras, ‘19], 
[Abernethy+, ‘21]) 

y t+1 = y t + γA∂Ψ(y t)

Dual update under Fictitious Play (with ! = 1):

Goal: control (non-uniform) energy growth of dual iterates.



§ Remaining intuition:

(Dual iterates of n=3 RPS)

§ For RPS matrices, we prove a 
cycling property of dual iterates.

Holds regardless of tiebreaking.

Goal: control (non-uniform) energy growth of dual iterates.

One slide overview of analysis

--> -->Cycling regularity of 
energy growth

O(T0.5) total
energy/regret.



Conclusion

Takeaway: new evidence that non-no-regret algorithms 
can still learn (converge to Nash) in zero-sum games. 

Open: establish same regret guarantee for FP on 
other classes of (symmetric) zero-sum games. 

Thanks! Questions?
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